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1 Introduction

The recent increase in the number of wind power producers has necessitated changes in the methods power
system operators employ to balance load and generation. Furthermore, the number of renewable energy
producers is also expected to increase in the US to 20% of total generation by the year 2030 [1]. Wind
power, unlike conventional fossil-fuel based generation, is intermittent and uncertain. Therefore, it is
crucial that this variability is quantified so that power system operators can schedule appropriate amounts
of reserve generation to compensate for fluctuations in wind production.

Ramps are large, sudden increases or decreases in wind power production. These events are of prime concern
to power system operators because they threaten the overall stability of the grid. These sudden changes in
generation levels effectively limit the operational capabilities of the power grid. Hence, information about
ramps and ramp prediction is highly valuable to power system operators.

A variety of methods have been used to provide reliable ramp predictions. Details of state-of-the-art
techniques are not readily available as wind forecasting for power systems is a lucrative business. In this
study, we attempt to develop plausible models for ramp behavior using techniques from statistical learning
theory. We first motivate the intuition behind using specific models to explain wind ramps. Then we create
and validate these models with actual wind power production data obtained from the Bonneville Power
Authority (BPA). We specifically examine three kinds of models:

1. k-means clustering

2. Gaussian mixture models (GMMs)

3. hidden Markov models (HMMs)

In Section 2, we describe our algorithm to identify wind ramps from time series data. Sections 3, 4, and 5
contain results from models developed to describe wind ramp behavior using k-means clustering, Gaussian
mixture models (GMMs) and hidden Markov models (HMMs) respectively. We conclude by outlining
possible extensions of this study in Section 6.
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2 Ramp Identification

Based on work done to define and categorize wind ramps in [5], we characterize each ramp according to
two parameters:

1. Absolute change in wind magnitude over ramp ∆M

2. Duration of ramp ∆T .

This parametrization is useful as it allows for a compact representation of wind ramping events. However,
in order to obtain values of (∆M ,∆T ), we must first identify wind ramps from time series data of wind
power generation.

Initially, the wind data is normalized with respect to the total capacity of wind production. The data is
then smoothed using a moving-average filter to eliminate high frequency noise. Next, a recursive bisection
is run on the data, which splits the data into ramp and non-ramp intervals. Given a particular time interval
with N points, the bisection algorithm first calculates the mean (µ) and the unnormalized variance (1) of
the slope of time series data xk.

σ2 :=
N−1∑
k=1

‖gk − µ‖2, where gk = xk+1 − xk (1)

If σ2 exceeds a specified threshold, the interval is split in half and the process is repeated until all intervals
obey this variance threshold.

This recursive bisection method introduces a bias in the way ramp intervals are found, since intervals are
always divided in half. In order to remove this bias, we perform a post-processing step a number of times.
In this algorithm, each interval is extended as far as possible while the gradient over the interval satisfies
the variance condition shown in (1). A brief explanation of this process follows:

Let I(X,Y ) := X
⋃
Y represent the function that combines intervals X and Y , preserving the order. Let

X̄i represent the interval X, excluding the last i data points. Let LX represent the length of the interval
X.

Given a particular interval A and its time consecutive interval B, the unnormalized variance, σ2 for I(A,B)
is calculated. If σ2 of I(A,B) is below a specified threshold, then intervals A and B are combined to form
a new interval. If σ2 of I(A,B) is above a specified threshold, σ2 is found for I(A, B̄i) for i = 1, . . . LB,
until either the variance condition is met (in which case, A and Bi are combined), or all of the sub-intervals
are tested. The part of B that is not combined is set as A for the next iteration of the algorithm and the
algorithm runs until all intervals have been examined.

Ramps are then defined to be intervals over which the gradient of the time series signal exceeds some
prespecified value. Identified ramps for a section of the data are shown in Figure 1, where the ramps
are identified in blue. (∆M ,∆T ) for ramp intervals are calculated and analysis is performed on this
low-dimensional representation of ramping events.
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Figure 1: Ramps Identified from Wind Data

3 k-means clustering

As we want to find trends in identified ramps, we first attempt to find a small number (k) of ramp clusters
to explain the observations. The k-means clustering algorithm was the first method used to identify these
ramp clusters. We tried this algorithm for values of k, the number of clusters, varying from 2 to 20. In
order to identify an optimal value of k we associate the following cost to pairs of clusters:

∆(A,B) :=
∑

i∈A∪B
(xi − µA∪B)2 −

∑
i∈A

(xi − µA)2 −
∑
i∈B

(xi − µB)2 =
nAnB
nA + nB

‖µA − µB‖22 (2)

Here, µi is the mean for cluster i while ni is the number of points assigned to cluster i. This metric (which
we call Ward Distance) is the same one used in Ward’s method, a well-known hierarchical clustering
algorithm [8]. This quantity measures how much the sum of squares of deviation between cluster data
points and cluster means associated with two clusters A and B changes if those two clusters are merged.
A small Ward distance for a particular pair of clusters indicates that one cluster is sufficient as opposed to
two. Therefore, we stop adding clusters if there is a sizable decrease in this metric when a new cluster is
added.

For each k, the k-means algorithm is run from 50 different random initial conditions. The cluster means,
and the minimum ∆ for all pairs of clusters are recorded for the run with the lowest distortion measure
(3).

J :=

N∑
n=1

K∑
i=1

zin‖xn − µi‖2 (3)

where zin = 1 if xn belongs to cluster i and zin = 0 otherwise. Table 1 lists the minimum Ward distance
(∆) for several k values.

Comparing the ∆ values for k = 4 and k = 5, we find that the addition of the 5th cluster does not add
much value in terms of explaining the data. We also decided as an alternative threshold to pick the model
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k min ∆

2 29.2521

4 1.7908

5 0.1913

8 0.1280

9 0.0998

10 0.0325

15 0.0020

Table 1: Table of Ward Distances from K-means

with the largest number of clusters for which the minimum Ward distance was greater than 0.1. This
situation was reached when k = 9. Accordingly, we decided on using k = 4, due to the sharp decrease in
minimum Ward distance, and k = 9, due to the 0.1 threshold on minimum Ward Distance, to build cluster
models to represent the data. Figure 2 visualizes the clustering of the data for these two cases.
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Figure 2: K-means with k = 4 (left) and k = 9 (right) clusters

4 Gaussian Mixture Model

While k-means clustering was an informative first step, the deterministic nature of allocating observations
to clusters is not ideal. In order to overcome this limitation of k-means clustering, we fit a Gaussian
Mixture Model (GMM) with a preset number of mixture components, denoted K. We assume a bivariate
normal distribution for the emission probabilities p(yt|qt = i) with means µi and variance Σi. Note that
yt refers to the observations while qt refers to the hidden state. It should be noted that this is perhaps
not the best model for the data, since ∆T ≥ 0 in our model. Nevertheless, a GMM will provide us an
informative starting point for data analysis so long as the probability mass associated with the domain
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∆T < 0 is small.

Our data set is clearly separated into two separate categories: increase ramps and decrease ramps. We
are ultimately interested in further classifying these two categories separately. Accordingly, the means and
variances of the increase ramps should not affect the update of the means and variances for the decrease
ramps and vice versa. Thus, the training data is separated into two data sets and the standard EM update
iterations for GMM are performed on the two data sets separately. We initialize the means of the K
mixture components of the GMM with the cluster means obtained from k-means clustering.

Once the model is developed for the various values of K, the number of mixture components, we validate the
models by evaluating the log likelihood of different data. Figure 3 shows this quantity for different values
of K. The values of K which were considered interesting in the k-means clustering analysis correspond to
the red triangles. Again, we find that models with K = 4 and K = 9 have larger likelihoods than those
obtained for neighboring values of K.
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Figure 3: Log-likelihood of GMM on Test Data for different numbers of clusters

Using a method similar to the expectation step of the EM algorithm, we also compute a quantity we call
the expected Ward Distance, which is an analog to the Ward distance seen in the k-means clustering section.

Here, we outline the derivation of the expected Ward distance. Define τ it := P(qit = 1|yt), to be the
probability that given a data point yt, the ith component of qt is equal to 1. Hence, the expected number
of points in a cluster C, denoted as nC , can be written as

E[nC |y] =
∑
t

E[I(qCt = 1)|yt] =
∑
t

P(qCt = 1|yt) =
∑
t

τCt . (4)

Then, the expected Ward distance ∆̄(A,B) between arbitrary clusters A and B easily follows:

∆̄(A,B) := E[∆(A,B)] = E
[
nAnB
nA + nB

‖µA − µB‖22
]

=

∑
t

τAt
∑
t

τBt∑
t

τAt +
∑
t

τBi
‖µA − µB‖22. (5)
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Figure 4 shows the expected Ward distance for different values of K. Much like the k-means case, there
is a sharp decrease between K = 4 and K = 5 indicating that a 5th cluster would be excessive. If more
model complexity is desired we look for the next sharp decrease in expected Ward distance and this occurs
between K = 9 and K = 10. Therefore, this analysis again supports using those two values of K = 4 and
K = 9, to create GMMs to represent the data.
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Figure 4: Expected Ward distance for different number of mixture components. Red triangles indicate
models with K = 4 and K = 9.

5 Hidden Markov model with Gaussian emission probabilities

The models considered until this point assume no dynamics between the hidden states qt representing the
underlying nature of the ramps. However, one expects ramp behavior to have some temporal correlations.
For instance, a very large increase in wind generation should be followed, some time later, by a decrease
of some magnitude. Accordingly, a hidden Markov model (HMM) is developed to analyze any temporal
correlations and is validated against a different set of data.

Model Description

The graphical model for an HMM is shown in Figure 5 for completeness. The emission probabilities
p(yt|qt = i) are assumed to be bivariate normal distributions with means µi and Σi. This normality
assumption was determined to be reasonable in the previous section even though the range of possible
values for ∆T is bounded. We also assume that underlying states can represent either increase ramps
or decrease ramps only. Similar to the Gaussian mixture model case, only increase ramp data is used
to update means and covariances of states assigned to describe increase ramps. Therefore, the number
of states corresponding to increase or decrease ramps is determined before parameter estimation via the
initialization of means.
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Figure 5: Hidden Markov Model

The number of total HMM states, K, is varied from 3 to 10, and they are equally divided into states
representing increase or decrease ramps based on state initialization. The EM algorithm, specifically the
alpha-gamma algorithm, is used to estimate the model parameters. The update equations for this algorithm
are found in Chapter 12 of the CS 281A course reader while the update equations for the emission means
and covariances are similar to those used in the Gaussian mixture model section.

Results

The models obtained for different values of K were validated by computing the log-likelihood of another
data set. Figure 6 shows a marked increase in the log likelihood from K = 3 to 4 and then a very modest
increase from that point onward. This implies that the 4 state HMM is sufficient to explain the variation
in ramps.
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Figure 6: Log-likelihood for HMMs with different numbers of underlying states. The triangle represents
the HMM with 4 states which is chosen for further analysis.

The HMM developed with K, the number of states, = 4 was particularly helpful in analyzing how ramp
behavior changes with time. Figure 7 shows the means and Gaussian sub-level sets (in red) for this case.
It is interesting to note that these states correspond to 4 distinct types of ramps:
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1. Small, short increase ramps

2. Large, long increase ramps

3. Large, long decrease ramps

4. Small, short decrease ramps

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ M (normalized w.r.t. wind capacity)

∆ 
T

 (
no

rm
al

iz
ed

 w
.r

.t.
 7

.5
 h

rs
)

3

2

14

Figure 7: HMM Model with 4 Clusters. Blue arrows denote the 4 largest transition probabilities in the
state transition matrix

The state transition matrix for this model is shown in Table 2. First, it is apparent that the large entries
are in the upper right and lower left 2x2 blocks. This implies that transitions from increase ramps to
decrease ramps and vice versa are more probable events than remaining in an increase or decrease ramp
state. Furthermore, as the antidiagonal of the matrix contains the largest transition probabilies, we can
infer the following:

1. Large, long increase ramps (2) are followed, with high probability, by large, long decrease ramps (3)
and vice versa.

2. Small, short increases (1) are usually followed by small, short decreases (4).

6 Future Work

While GMMs and HMMs have provided a reasonable description of the wind data, they may not be
appropriate since our domain is bounded. In the future, we will investigate other bivariate distributions
that are bounded, namely the Weibull distribution and the Gamma Distribution.
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Current State

Future State 1 2 3 4

1 0.1 0.09 0.26 0.82

2 0.08 0.19 0.6 0.1

3 0.16 0.59 0.08 0.04

4 0.67 0.13 0.06 0.04

Table 2: State transition probability matrix for HMM

The Weibull distribution is parameterized by a shape parameter k and a scale parameter λ > 0, with pdf

p(x, |λ, k) =

{
k
λ
x
λ
(k−1)e−(x/λ)

k
x ≥ 0

0 else

There is ample literature describing models of wind and wave data classification using a Weibull distribution
[7],[6], [3], [2].

Likewise, a Gamma Distribution, of which there are many bivariate forms [4], is also a promising distribu-
tion and does not violate the domain constraints. Characterized by shape parameter k and scale parameter
θ, the probability density function is

p(x|k, θ) = xk−1
e−x/θ

θkΓ(k)
for x ≥ 0, k, θ > 0.

The histogram of ∆M and ∆T in Figure 8 reveals that the density of the data is similar to that of both
the Weibull and Gamma Distributions.

Figure 8: Histogram of ∆M and ∆T

In the future we will plan to enhance our algorithm to improve ramp identification.
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